Friday, September 12, 2025
spot_img

Decoded: How salt affects blood flow in brain, causes Alzheimer’s

Date:

Share post:

spot_imgspot_img

New York, Nov 15 : US researchers have in a first-of-its-kind study explored the relationship between neuron activity and blood flow deep in the brain, as well as how the brain is affected by salt consumption, resulting in cognitive decline such as Alzheimer’s.

The team from the Georgia State University focused on the hypothalamus — a deep brain region involved in critical body functions including drinking, eating, body temperature regulation and reproduction.

The study, published in the journal Cell Reports, examined how blood flow to the hypothalamus changes in response to salt intake.

According to Javier Stern, professor of neuroscience at the varsity, when people ingest salty food, the brain senses it and activates neurons that trigger the release of vasopressin — an antidiuretic hormone that plays a key role in maintaining the proper concentration of salt in the body.

But, in contrast to previous studies that have observed a positive link between neuron activity and increased blood flow, the new study showed a decrease in blood flow as the neurons became activated in the hypothalamus.

“The findings took us by surprise because we saw vasoconstriction, which is the opposite of what most people described in the cortex in response to a sensory stimulus,” said Stern.

“Reduced blood flow is normally observed in the cortex in the case of diseases like Alzheimer’s or after a stroke or ischemia.”

The team dubbed the phenomenon “inverse neurovascular coupling”, or a decrease in blood flow that produces hypoxia — lack of oxygen. They also observed other differences: In the cortex, vascular responses to stimuli are very localised and the dilation occurs rapidly.

But, in the hypothalamus, the response was diffuse and took place slowly, over a long period of time.

“When we eat a lot of salt, our sodium levels stay elevated for a long time,” said Stern. “We believe the hypoxia is a mechanism that strengthens the neurons’ ability to respond to the sustained salt stimulation, allowing them to remain active for a prolonged period.”

The findings raise interesting questions about how hypertension may affect the brain. Between 50 and 60 per cent of hypertension is believed to be salt-dependent — triggered by excess salt consumption.

“If you chronically ingest a lot of salt, you’ll have hyperactivation of vasopressin neurons. This mechanism can then induce excessive hypoxia, which could lead to tissue damage in the brain,” said Stern.

“If we can better understand this process, we can devise novel targets to stop this hypoxia-dependent activation and perhaps improve the outcomes of people with salt-dependent high blood pressure,” he noted.(IANS)

spot_imgspot_img

Related articles

Bangladesh scrape past Hong Kong

Abu Dhabi, Sep 11: Skipper Litton Das led from the front as Bangladesh registered seven-wicket win over Hong...

SC rejects call to cancel India-Pak match

New Delhi, Sep 11: The Supreme Court on Thursday refused urgent listing of a plea seeking cancellation of...

First-timers Oman take on in-form Pakistan in Asia Cup

Dubai, Sep 11: Pakistan will look to fine-tune their game ahead of the high-profile Asia Cup clash against...

SPL: Laitkor rally to beat leaders Nangkiew Irat 3-1

By Our Reporter Shillong, Sep 11: The race for the Shillong Premier League 2025 title was thrown wide open...